

Institut de Prévention des Sinistres Catastrophiques Bâtir des communautés résilientes

Calgary hail seeding benefit-cost analysis

Keith Porter, ICLR chief engineer

October 30, 2023

Hail seeding

Literature

Performance-based engineering and benefit-cost analysis (FEMA 2012)

1. Define the asset

2. What nature

does

Asset analysis: Building quantity Roofing material Hazard analysis: *Storm frequency Stone size distribution Hitrate Duration*

3. Building forces, deformations

4. Damage symptoms

Damage analysis: Shingle fragility Damage | storm 5. Dollars, deaths, downtime, etc.

ths, 6. Decisionc. making

is: Loss analysis: *Loss* | damage

Decision analysis: EAL as-is, what-if Benefit Benefit-cost ratio

Assets: 409,000 single-family-equivalent dwellings

Table 1. Calgary housing statistics

Household and dwelling characteristics	Total	
Total private dwellings	531,062	
Total occupied private dwellings	502,300	
Single-detached house	276,050	
Semi-detached house	31,660	
Row house	48,860	
Apartment or flat in a duplex	21,165	
Apartment in a building that has fewer than five storeys	81,870	
Apartment in a building that has five or more storeys	40,700	
Other single-attached house	200	
Movable dwelling	1,790	

Hailstorm frequency f_h (Etkin 2018)

Largest diameter, hitrate, & duration (Grieser and Hill 2019)

Pirani et al. (2023) avg effect of seeding on vertically integrated liquid (VIL) after 30 minutes

VIL percentile	Seeded – unseeded VIL		
25%	+60%		
50%	+24%		
75%	-5%		
90%	-15%		
95%	-17%		
99%	-18%		

Joe (2023) relationship between D_L and VIL

Asphalt shingle roof fragility $P_{fL}(d)$ (Porter 2022)

Figure 12. Shingle failure probability as a function of the storm's largest hailstone

Table 7. Contributors to repair cost per roofing square.

	Cost parameter	Unrated	Class 4	Comment
-	Underlayment demo + replace material	\$6.69	\$6.69	Unit cost roof underlayment, demolish & replace 15# felt, from RSMeans (2020) pg. 73
	Underlayment demo + replace labour	\$22.20	\$22.20	Ditto
	Shingle demo & install labour	\$125.73	\$125.73	Labour unit cost demolish & install 30-year comp shingles RSMeans (2020, pg. 73)
	Shingle material low	\$85.00	\$167.00	Marquis Weathermax (Home Depot Calgary); Mystique (RONA); TruDefinition Duration (Menards, Home Depot)
	Shingle material moderate	\$96.00	\$260.00	Dakota (RONA.ca); Manoir (RONA. ca); TruDefinition Weathguard HP (Hanscomb Ltd 2020)
	Shingle material high	\$99.00	\$340.00	Everest (RONA.ca); Vista AR (Hanscomb Ltd 2020); Stormfighter IR (Hanscomb Ltd 2020)
	Total cost/sq low	\$239.62	\$321.62	
	Total cost/sq moderate	\$250.62	\$414.62	
	Total cost/sq high	\$253.62	\$494.62	
	Marginal cost/sq low	\$0.00	\$82.00	
F	Marginal cost/sg moderate	\$ ∩ ∩ }	\$164.00	

Repair cost/square

Method

- $P_{FL}(d) =$ fraction of shingles to be replaced if $D_L = d$
- U = unit repair cost
- A = roof area
- R = repair difficulty factor
- E = threshold for replacement

$$L(d) = P_{f_{L}}(d) \cdot U \cdot A \cdot R$$

= $P_{f_{L}}(d) \cdot V$ $P_{f_{L}}(d) < E$
= V $P_{f_{L}}(d) \ge E$

Probability density function of hailstone size, $f_{DL}(d)$

Average roof repair cost per hailstorm per house, *E*[*L*]

 $f_{DL}(d)$ = probability density function of D_L

$$E[L] = \int_{d=5}^{\infty} L(d) \cdot f_{D_L}(d) \cdot dd$$

No. of roofs in a community, in single-family-equivalent dwellings, N_{SFED}

- i = house type
- N_i = number of houses of type *i*
- F_{5i} = roof area of type *i* as fraction of a single-family dwelling

$$N_{SFED} = \sum_{i} N_{i} \cdot F_{5i}$$

Average annualized loss in a community, EAL

$$f_h =$$
 hailstorm frequency

$$EAL = f_h \cdot N_{SFED} \cdot E[L]$$

Annual benefit of mitigation B, benefit-cost ratio BCR

- EAL = as-is
- EAL' = with seeding
- C = annual cost of seeding

$$B = EAL - EAL'$$
$$BCR = \frac{B}{C}$$

Application

Pirani et al. (2023) + Joe (2023): more small hailstones, fewer big ones

Hazard analysis: 18% reduction in D_1 , 5% reduction in storm area

Pirani et al. (2023) seeding & VIL Change in PDF of D **VIL** percentile Seeded – unseeded VIL 0.015 (cm) 25% 0.081 +60% density 50% +24% diameter D 75% -5% Seeded 0.010 90% -15% Probability 95% -17% 99% -18% Unseeded 0.005 Hailstone 0.000 20 60 80 100 120 40 20 40 60 n VIL (kg/m^2) Hailstone diameter D (cm)

Joe (2023) VIL & D₁

10/30/2023

	No seeding	With seeding
A. Avg roof repair cost per hailstorm per house, E[L]	\$293	\$155
B. Single-family-equivalent dwellings, N _{SFED}	409,000	409,000
C. Calgary hailstorms per year, f_h	2.35	2.35
D. Hailstorm footprint area relative to unseeded	1.0	0.95
E. Annual roof repair cost = $A \times B \times C \times D$	\$282 million	\$142 million
F. Reduced annual roof repair $cost = E_{no \ seed} - E_{with \ seed}$		\$140 million
G. Reduced annual auto repair cost (by proportion)		\$90 million
H. Benefit per year = $F + G$		\$230 million
I. Seeding cost per year (Tait 2022)		\$5 million
$BCR = benefit (H) \div cost (I)$		45:1
		22

- Vehicle damage assumed proportional to roof damage, rather than modeled more directly
- Expressing hazard in terms of vertically integrated liquid to estimate hailstone diameter adds uncertainty and potential error to the model
- Analysis imputes causation to correlation between seeding and ΔVIL , and between ΔVIL and $\Delta \text{D}_{\rm L}$
- One can imagine double-blind testing like Kerr (1982)

- 1. Hail seeding may reduce Calgary loss by ~\$200M/year (not eliminated)
- 2. Several limitations, so maybe actual reduction is less. \$100 M/year?
- 3. Even so, 100 million = 20:1 is very good

Alberta Severe Weather Management Society

